
Introduction to

High Performance Computing

Pierre Aubert

High Performance Computing (HPC)

▶ Part of the computer science

▶ Get the best performances by using the right algorithms on the right architectures

Pierre Aubert, Introduction to HPC 2

Computing Processing Unit (CPU)

John Von Neumann architecture (1945)

1903-1957

Pierre Aubert, Introduction to HPC 3

Arithmetic Logic Unit (ALU)

ALU

Pierre Aubert, Introduction to HPC 4

Arithmetic Logic Unit (ALU)

ALU ALU Vectorized

Pierre Aubert, Introduction to HPC 5

HPC Libraries

▶ C :
▶ MKL, Atlas, BLAS, Lapack

▶ C++ :
▶ TBB, Eigen, Armadillo, HPX

▶ Python :
▶ Numpy
▶ Numba (JIT, Just In Time)

Pierre Aubert, Introduction to HPC 6

Aim of this tutorial

▶ How HPC libraries work

▶ How to measure performances of a function

▶ Focus on float computation (simple precision)
▶ Sufficient in most cases and get very good speed up

▶ Precision of the Computation :
▶ Optimized version is MORE precise than scalar version !!!

▶ So, asking to have exactly the same result as scalar version is a non sense !!!
▶ To clame scalar was check is not a plea because errors can compensate each other

▶ Optimized float version can reach same precision as scalar double version

Pierre Aubert, Introduction to HPC 7

Prerequisites for this tutorial

▶ Tools for compilation :
▶ GCC/G++ : version 7.2 (I do not know what is going on with the version 8)
▶ CMake : version ≥ 3.0
▶ Make : version ≥ 4.0

▶ Versioning Tool :
▶ Git : version ≥ 2.14.1

▶ Tool for drawing plot :
▶ Gnuplot : version ≥ 5.0

▶ Optional Tools :
▶ hwloc-ls
▶ jupyter-notebook
▶ anaconda

Pierre Aubert, Introduction to HPC 8

Outline of the tutorial

▶ Warm up

▶ Creation of a HPC/Timer library

▶ Optimisation of Hadamard product (+ python wrapper)

▶ Optimisation of saxpy (homework)

▶ Optimisation of a vector reduction

▶ Application/exercice : Optimisation of barycentre computation (homework)

▶ Optimisation of Dense Matrix-Matrix multiplication

▶ What about branching ? (bonus)

▶ Conclusion

Pierre Aubert, Introduction to HPC 9

How to evaluate performances ?

Basically with a timer.

▶ Instrumenting the code
▶ GProf
▶ Perf

▶ Emulate the binary
▶ Valgrind (http://www.valgrind.org/)
▶ Maqao (http://www.maqao.org/)

▶ Python :
▶ cprofile (+ snakeviz)
▶ time

Pierre Aubert, Introduction to HPC 10

http://www.valgrind.org/
http://www.maqao.org/

How to evaluate time spent in a function ?

▶ Tools :
▶ GProf
▶ Perf
▶ Valgrind
▶ Maqao

▶ Functions :
▶ clock : to get a time in seconds (not very precise).
▶ rdtsc : to get a time in cycles (very precise).

▶ Method :
▶ To evaluate N calls of the function and then to

average the results.

Pierre Aubert, Introduction to HPC 11

The Kernel approach

▶ What is a kernel ?
▶ The function which does the computation and which does not call any other function.

So a pure mathematic function.

▶ Elapsed time of compilation :
▶ GCC always tries to make a short compilation (typically 1 second per file).
▶ It is the same if the file has 100 000 lines or not.
▶ So, short files implies better optimisations.

Pierre Aubert, Introduction to HPC 12

Where to get the tutorial ?

Web Tutorial : https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/index.html

Minimal repository : https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/
ressource/build/Correction/ExampleMinimal.tar.gz

Correction :
https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/ressource/build/

Correction/Examples.tar.gz

Pierre Aubert, Introduction to HPC 13

https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/index.html
https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/ressource/build/Correction/ExampleMinimal.tar.gz
https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/ressource/build/Correction/ExampleMinimal.tar.gz
https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/ressource/build/Correction/Examples.tar.gz
https://lappweb.in2p3.fr/~paubert/ASTERICS_HPC/ressource/build/Correction/Examples.tar.gz

