3.3.3.1 : Avec les transfert de données



Développons le fichier main.cpp :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <iostream>
#include "timer.h"
#include "asterics_cuda.h"

#include "hadamard_product_cuda.h"

///Get the number of cycles per elements of the Hadamard product
/**	@param nbElement : number of elements of the tables
 * 	@param nbRepetition : number of repetition to evaluate the function hadamard_product
 * 	@param maxNbThreadPerBlockX : maximum number of thread per block on X
 * 	@param maxNbBlockX : maximum number of block in the grid on X
 * 	@param warpSize : number of thread per warp
*/
void evaluateHadamardProduct(long unsigned int nbElement, long unsigned int nbRepetition, int maxNbThreadPerBlockX, int maxNbBlockX, int warpSize){
	//Allocation of the tables
	float * tabResult = new float[nbElement];
	float * tabX = new float[nbElement];
	float * tabY = new float[nbElement];
	//Initialisation of the tables
	for(long unsigned int i(0lu); i < nbElement; ++i){
		tabX[i] = (float)(i*32lu%17lu);
		tabY[i] = (float)(i*57lu%31lu);
	}
	float res(0.0f);
	//Stating the timer
	long unsigned int beginTime(rdtsc());
	for(long unsigned int i(0lu); i < nbRepetition; ++i){
		hadamard_product_cuda(tabResult, tabX, tabY, nbElement,
					maxNbThreadPerBlockX, maxNbBlockX, warpSize);
		res += tabResult[0];
	}
	//Get the time of the nbRepetition calls
	long unsigned int elapsedTime((double)(rdtsc() - beginTime)/((double)nbRepetition));
	
	double cyclePerElement(((double)elapsedTime)/((double)nbElement));
	std::cout << "evaluateHadamardProduct : nbElement = "<<nbElement<<", cyclePerElement = " << cyclePerElement << " cy/el, elapsedTime = " << elapsedTime << " cy, res = " << res << std::endl;
	std::cerr << nbElement << "\t" << cyclePerElement << "\t" << elapsedTime << std::endl;
	//Deallocate the tables
	delete[] tabResult;
	delete[] tabX;
	delete[] tabY;
}


int main(int argc, char** argv){
	std::cout << "Hadamard product" << std::endl;
#ifdef SELECTED_GPU
	int deviceId = asterics_setDevice(SELECTED_GPU);
#else
	int deviceId(0);
#endif
	int maxNbThreadPerBlockX(0), maxNbBlockX(0), warpSize(0);
	asterics_getGpuInfo(maxNbThreadPerBlockX, maxNbBlockX, warpSize, deviceId);
	evaluateHadamardProduct(1000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(2000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(3000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(5000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(10000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(20000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(50000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(100000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(500000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(1000000lu, 100lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(10000000lu, 100lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(100000000lu, 10lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(500000000lu, 10lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	return 0;
}


Le fichier main.cpp complet.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
/***************************************
	Auteur : Pierre Aubert
	Mail : pierre.aubert@lapp.in2p3.fr
	Licence : CeCILL-C
****************************************/

#include <iostream>
#include "timer.h"
#include "asterics_cuda.h"

#include "hadamard_product_cuda.h"

///Get the number of cycles per elements of the Hadamard product
/**	@param nbElement : number of elements of the tables
 * 	@param nbRepetition : number of repetition to evaluate the function hadamard_product
 * 	@param maxNbThreadPerBlockX : maximum number of thread per block on X
 * 	@param maxNbBlockX : maximum number of block in the grid on X
 * 	@param warpSize : number of thread per warp
*/
void evaluateHadamardProduct(long unsigned int nbElement, long unsigned int nbRepetition, int maxNbThreadPerBlockX, int maxNbBlockX, int warpSize){
	//Allocation of the tables
	float * tabResult = new float[nbElement];
	float * tabX = new float[nbElement];
	float * tabY = new float[nbElement];
	//Initialisation of the tables
	for(long unsigned int i(0lu); i < nbElement; ++i){
		tabX[i] = (float)(i*32lu%17lu);
		tabY[i] = (float)(i*57lu%31lu);
	}
	float res(0.0f);
	//Stating the timer
	long unsigned int beginTime(rdtsc());
	for(long unsigned int i(0lu); i < nbRepetition; ++i){
		hadamard_product_cuda(tabResult, tabX, tabY, nbElement,
					maxNbThreadPerBlockX, maxNbBlockX, warpSize);
		res += tabResult[0];
	}
	//Get the time of the nbRepetition calls
	long unsigned int elapsedTime((double)(rdtsc() - beginTime)/((double)nbRepetition));
	
	double cyclePerElement(((double)elapsedTime)/((double)nbElement));
	std::cout << "evaluateHadamardProduct : nbElement = "<<nbElement<<", cyclePerElement = " << cyclePerElement << " cy/el, elapsedTime = " << elapsedTime << " cy, res = " << res << std::endl;
	std::cerr << nbElement << "\t" << cyclePerElement << "\t" << elapsedTime << std::endl;
	//Deallocate the tables
	delete[] tabResult;
	delete[] tabX;
	delete[] tabY;
}


int main(int argc, char** argv){
	std::cout << "Hadamard product" << std::endl;
#ifdef SELECTED_GPU
	int deviceId = asterics_setDevice(SELECTED_GPU);
#else
	int deviceId(0);
#endif
	int maxNbThreadPerBlockX(0), maxNbBlockX(0), warpSize(0);
	asterics_getGpuInfo(maxNbThreadPerBlockX, maxNbBlockX, warpSize, deviceId);
	evaluateHadamardProduct(1000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(2000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(3000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(5000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(10000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(20000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(50000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(100000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(500000lu, 1000lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(1000000lu, 100lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(10000000lu, 100lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(100000000lu, 10lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	evaluateHadamardProduct(500000000lu, 10lu, maxNbThreadPerBlockX, maxNbBlockX, warpSize);
	return 0;
}


Vous pouvez télécharger le fichier ici.