5.3.1.2.3 : Le fichier source complet


Le fichier intrinsics_propagation_link_block.cpp complet :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/***************************************
	Auteur : Pierre Aubert
	Mail : pierre.aubert@lapp.in2p3.fr
	Licence : CeCILL-C
****************************************/
#include "phoenix_intrinsics.h"
#include <algorithm>
#include <execution>
#include "intrinsics_propagation_link_block.h"

///Propagate the U and V species in the matVecVecU and matVecV
/**	@param[out] outMatVecU : updated matrix U version (with vectorial neighbours)
 * 	@param[out] outMatVecV : updated matrix V version (with vectorial neighbours)
 * 	@param matVecVecU : input of matrix U (with vectorial neighbours)
 * 	@param matVecV : input of matrix V (with vectorial neighbours)
 * 	@param nbRow : number of rows of the matrices
 * 	@param nbCol : number of columns of the matrices
 * 	@param matBroadcastDeltaSquare : matrix of the delta square values (with broadcast neighbours)
 * 	@param nbStencilRow : number of rows of the matrix matBroadcastDeltaSquare
 * 	@param nbStencilCol : number of columns of the matrix matBroadcastDeltaSquare
 * 	@param diffusionRateU : diffusion rate of the U specie
 * 	@param diffudionRateV : diffusion rate of the V specie
 * 	@param feedRate : rate of the process which feeds U and drains U, V and P
 * 	@param killRate : rate of the process which converts V into P
 * 	@param dt : time interval between two steps
 * 	@param padding : padding of the block
*/
void grayscott_propagation_block(float * outMatVecU, float * outMatVecV, const float * matVecVecU, const float * matVecVecV, long nbRow, long nbCol,
		       const float * matBroadcastDeltaSquare, long nbStencilRow, long nbStencilCol,
		       float diffusionRateU, float diffusionRateV, float feedRate, float killRate, float dt, size_t padding)
{
	long offsetStencilRow((nbStencilRow - 1l)/2l);
	long offsetStencilCol((nbStencilCol - 1l)/2l);
	long nbVecCol(nbCol/PLIB_VECTOR_SIZE_FLOAT);
	PRegVecf vecOne(plib_broadcast_ss(1.0f));
	PRegVecf vecFeedRate(plib_broadcast_ss(feedRate));
	PRegVecf vecKillRate(plib_broadcast_ss(killRate));
	PRegVecf vecDiffudionRateU(plib_broadcast_ss(diffusionRateU));
	PRegVecf vecDiffudionRateV(plib_broadcast_ss(diffusionRateV));
	PRegVecf vecDt(plib_broadcast_ss(dt));
	for(long i(1l); i < nbRow - 1l; ++i){
		long firstRowStencil(std::max(i - offsetStencilRow, 0l));
		long lastRowStencil(std::min(i + offsetStencilRow + 1l, nbRow));
		for(long j(1l); j < nbVecCol - 1l; ++j){
			long firstColStencil(std::max(j - offsetStencilCol, 0l));
			long lastColStencil(std::min(j + offsetStencilCol + 1l, nbVecCol));
			long stencilIndexRow(0l);
			
// 			float u(matU[i*nbCol + j]), v(matV[i*nbCol + j]);
// 			float fullU(0.0f), fullV(0.0f);
			
			PRegVecf vecU(plib_load_ps(matVecVecU + i*padding + (i*nbVecCol + j)*PLIB_VECTOR_SIZE_FLOAT));
			PRegVecf vecV(plib_load_ps(matVecVecV + i*padding + (i*nbVecCol + j)*PLIB_VECTOR_SIZE_FLOAT));
			
			PRegVecf vecFullU(plib_broadcast_ss(0.0f)), vecFullV(plib_broadcast_ss(0.0f));
			for(long k(firstRowStencil); k < lastRowStencil; ++k){
				long stencilIndexCol(0l);
				for(long l(firstColStencil); l < lastColStencil; ++l){
// 					float deltaSquare(matDeltaSquare[stencilIndexRow*nbStencilCol + stencilIndexCol]);
					PRegVecf vecDeltaSquare(plib_load_ps(matBroadcastDeltaSquare +
									(stencilIndexRow*nbStencilCol + stencilIndexCol)*PLIB_VECTOR_SIZE_FLOAT));
					
					PRegVecf vecKLU(plib_load_ps(matVecVecU + k*padding + (k*nbVecCol + l)*PLIB_VECTOR_SIZE_FLOAT));
					PRegVecf vecKLV(plib_load_ps(matVecVecV + k*padding + (k*nbVecCol + l)*PLIB_VECTOR_SIZE_FLOAT));
					
					PRegVecf vecKLUminU(plib_sub_ps(vecKLU, vecU));
					PRegVecf vecKLVminV(plib_sub_ps(vecKLV, vecV));
					
					PRegVecf vecKLUminUdMultDeltaSquare(plib_mul_ps(vecKLUminU, vecDeltaSquare));
					PRegVecf vecKLVminVdMultDeltaSquare(plib_mul_ps(vecKLVminV, vecDeltaSquare));
					
					vecFullU = plib_add_ps(vecFullU, vecKLUminUdMultDeltaSquare);
					vecFullV = plib_add_ps(vecFullV, vecKLVminVdMultDeltaSquare);
					
// 					fullU += (matU[k*nbCol + l] - u)*deltaSquare;
// 					fullV += (matV[k*nbCol + l] - v)*deltaSquare;
					++stencilIndexCol;
				}
				++stencilIndexRow;
			}
// 			float uvSquare(u*v*v);
			PRegVecf vecUVSquare(plib_mul_ps(vecU, plib_mul_ps(vecV, vecV)));
			
			PRegVecf vecOneMinusU(plib_sub_ps(vecOne, vecU));
			PRegVecf vecFeedPlusKill(plib_add_ps(vecFeedRate, vecKillRate));
			
			PRegVecf vecDiffFullU(plib_mul_ps(vecDiffudionRateU, vecFullU));
			PRegVecf vecDiffFullV(plib_mul_ps(vecDiffudionRateV, vecFullV));
			
			PRegVecf vecFeedRateMultOneMinusU(plib_mul_ps(vecFeedRate, vecOneMinusU));
			PRegVecf vecFeedPlusKillMultV(plib_mul_ps(vecFeedPlusKill, vecV));
			
			PRegVecf vecDiffFullUMinusUVSquare(plib_sub_ps(vecDiffFullU, vecUVSquare));
			PRegVecf vecDiffFullVPlusUVSquare(plib_add_ps(vecDiffFullV, vecUVSquare));
			
			PRegVecf vecDu(plib_add_ps(vecDiffFullUMinusUVSquare, vecFeedRateMultOneMinusU));
			PRegVecf vecDv(plib_sub_ps(vecDiffFullVPlusUVSquare, vecFeedPlusKillMultV));
			
// 			float du(diffudionRateU*fullU - uvSquare + feedRate*(1.0f - u));
// 			float dv(diffusionRateV*fullV + uvSquare - (feedRate + killRate)*v);
			PRegVecf vecDuDt(plib_mul_ps(vecDu, vecDt));
			PRegVecf vecDvDt(plib_mul_ps(vecDv, vecDt));
			
			PRegVecf vecUPlusDuDt(plib_add_ps(vecU, vecDuDt));
			PRegVecf vecVPlusDvDt(plib_add_ps(vecV, vecDvDt));
			
			plib_store_ps(outMatVecU + i*padding + (i*nbVecCol + j)*PLIB_VECTOR_SIZE_FLOAT, vecUPlusDuDt);
			plib_store_ps(outMatVecV + i*padding + (i*nbVecCol + j)*PLIB_VECTOR_SIZE_FLOAT, vecVPlusDvDt);
			
// 			outMatVecU[i*nbCol + j] = u + du*dt;
// 			outMatVecV[i*nbCol + j] = v + dv*dt;
		}
	}
}

///Propagate the U and V species in the matVecVecU and matVecV for blocks
/**	@param[out] outMatVecU : updated matrix U version (with vectorial neighbours)
 * 	@param[out] outMatVecV : updated matrix V version (with vectorial neighbours)
 * 	@param matVecVecU : input of matrix U (with vectorial neighbours)
 * 	@param matVecV : input of matrix V (with vectorial neighbours)
 * 	@param matBroadcastDeltaSquare : matrix of the delta square values (with broadcast neighbours)
 * 	@param nbStencilRow : number of rows of the matrix matBroadcastDeltaSquare
 * 	@param nbStencilCol : number of columns of the matrix matBroadcastDeltaSquare
 * 	@param diffusionRateU : diffusion rate of the U specie
 * 	@param diffudionRateV : diffusion rate of the V specie
 * 	@param feedRate : rate of the process which feeds U and drains U, V and P
 * 	@param killRate : rate of the process which converts V into P
 * 	@param dt : time interval between two steps
*/
void grayscott_propagation_compute_link_block(PBlock<float> & outMatVecU, PBlock<float> & outMatVecV, const PBlock<float> & matVecVecU, const PBlock<float> & matVecVecV,
					const float * matBroadcastDeltaSquare, long nbStencilRow, long nbStencilCol,
					float diffusionRateU, float diffusionRateV, float feedRate, float killRate, float dt)
{
	size_t nbRow(outMatVecU.getFullNbRow()), nbCol(outMatVecU.getNbCol());
	grayscott_propagation_block(outMatVecU.getData(), outMatVecV.getData(), matVecVecU.getData(), matVecVecV.getData(), nbRow, nbCol,
				matBroadcastDeltaSquare, nbStencilRow, nbStencilCol,
				diffusionRateU, diffusionRateV, feedRate, killRate, dt, outMatVecU.getPadding());
}

///Propagate the U and V species in the matVecVecU and matVecV
/**	@param[out] vecBlockOutU : vector of output blocks for U
 * 	@param[out] vecBlockOutV : vector of output blocks for V
 * 	@param[out] vecBlockOutU : vector of input blocks for U
 * 	@param[out] vecBlockOutV : vector of input blocks for V
 * 	@param matBroadcastDeltaSquare : matrix of the delta square values (with broadcast neighbours)
 * 	@param nbStencilRow : number of rows of the matrix matBroadcastDeltaSquare
 * 	@param nbStencilCol : number of columns of the matrix matBroadcastDeltaSquare
 * 	@param diffusionRateU : diffusion rate of the U specie
 * 	@param diffudionRateV : diffusion rate of the V specie
 * 	@param feedRate : rate of the process which feeds U and drains U, V and P
 * 	@param killRate : rate of the process which converts V into P
 * 	@param dt : time interval between two steps
*/
void grayscott_propagation_link_block(std::vector<PBlock<float> > & vecBlockOutU, std::vector<PBlock<float> > & vecBlockOutV,
				std::vector<PBlock<float> > & vecBlockInU, std::vector<PBlock<float> > & vecBlockInV,
				const float * matBroadcastDeltaSquare, long nbStencilRow, long nbStencilCol,
				float diffusionRateU, float diffusionRateV, float feedRate, float killRate, float dt)
{
	std::vector<size_t> vecIndex;
	for(size_t i(0lu); i < vecBlockOutU.size(); ++i){vecIndex.push_back(i);}
	std::for_each(std::execution::seq, vecIndex.begin(), vecIndex.end(),
			[&](size_t i){
				grayscott_propagation_compute_link_block((PBlock<float>&)vecBlockOutU[i], (PBlock<float>&)vecBlockOutV[i],
								vecBlockInU[i], vecBlockInV[i],
								matBroadcastDeltaSquare, nbStencilRow, nbStencilCol,
								diffusionRateU, diffusionRateV, feedRate, killRate, dt);
			});
}


Vous pouvez le télécharger ici.